The Shared Logistic Normal Distribution for Grammar Induction

نویسندگان

  • Shay B. Cohen
  • Noah A. Smith
چکیده

We present a shared logistic normal distribution as a Bayesian prior over probabilistic grammar weights. This approach generalizes the similar use of logistic normal distributions [3], enabling soft parameter tying during inference across different multinomials comprising the probabilistic grammar. We show that this model outperforms previous approaches on an unsupervised dependency grammar induction task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shared Logistic Normal Distributions for Soft Parameter Tying in Unsupervised Grammar Induction

We present a family of priors over probabilistic grammar weights, called the shared logistic normal distribution. This family extends the partitioned logistic normal distribution, enabling factored covariance between the probabilities of different derivation events in the probabilistic grammar, providing a new way to encode prior knowledge about an unknown grammar. We describe a variational EM ...

متن کامل

Logistic Normal Priors for Unsupervised Probabilistic Grammar Induction

We explore a new Bayesian model for probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilistic context-free grammars. Our model extends the correlated topic model framework to probabilistic grammars, exploiting the logistic normal distribution as a prior over the grammar parameters. We derive a variational EM algorithm for tha...

متن کامل

Logistic–Normal Distribution‎: ‎Properties and Application

‎In this paper some properties of logistics‎ - ‎x family are discussed and a member of the family‎, ‎the logistic–normal distribution‎, ‎is studied in detail‎. ‎Average deviations‎, ‎risk function and fashion for logistic–normal distribution is obtained‎. ‎The method of maximum likelihood estimation is proposed for estimating the parameters of the logistic–normal distribution and a data set is ...

متن کامل

Unsupervised Bayesian Parameter Estimation for Dependency Parsing

We explore a new Bayesian model for probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilitsic context-free grammars. Our model extends the correlated topic model framework to probabilistic grammars, exploiting the logistic normal prior as a prior over the grammar parameters. We derive a variational EM algorithm for that model...

متن کامل

یک مدل بیزی برای استخراج باناظر گرامر زبان طبیعی

In this paper, we show that the problem of grammar induction could be modeled as a combination of several model selection problems. We use the infinite generalization of a Bayesian model of cognition to solve each model selection problem in our grammar induction model. This Bayesian model is capable of solving model selection problems, consistent with human cognition. We also show that using th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008